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Cognitive training enhances growth mindset in children
through plasticity of cortico-striatal circuits
Lang Chen 1,2,3✉, Hyesang Chang 3✉, Jeremy Rudoler3, Eydis Arnardottir3, Yuan Zhang3, Carlo de los Angeles3 and
Vinod Menon 3,4,5✉

Growth mindset, the belief that one’s abilities can improve through cognitive effort, is an important psychological construct with
broad implications for enabling children to reach their highest potential. However, surprisingly little is known about malleability of
growth mindset in response to cognitive interventions in children and its neurobiological underpinnings. Here we address critical
gaps in our knowledge by investigating behavioral and brain changes in growth mindset associated with a four-week training
program designed to enhance foundational, academically relevant, cognitive skills in 7–10-year-old children. Cognitive training
significantly enhanced children’s growth mindset. Cross-lagged panel analysis of longitudinal pre- and post-training data revealed
that growth mindset prior to training predicted cognitive abilities after training, providing support for the positive role of growth
mindset in fostering academic achievement. We then examined training-induced changes in brain response and connectivity
associated with problem solving in relation to changes in growth mindset. Children’s gains in growth mindset were associated with
increased neural response and functional connectivity of the dorsal anterior cingulate cortex, striatum, and hippocampus, brain
regions crucial for cognitive control, motivation, and memory. Plasticity of cortico-striatal circuitry emerged as the strongest
predictor of growth mindset gains. Taken together, our study demonstrates that children’s growth mindset can be enhanced by
cognitive training, and elucidates the potential neurobiological mechanisms underlying its malleability. Findings provide important
insights into effective interventions that simultaneously promote growth mindset and learning during the early stages of cognitive
development.
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INTRODUCTION
Growth mindset, the belief in improvements in one’s cognitive
abilities through personal effort, is a psychological construct with
broad implications for enabling students to reach their highest
potential1,2. Endorsement of growth mindset has been linked to
higher academic achievement and long-term professional out-
comes3,4. Despite decades of behavioral research, systematic
investigations of changes in growth mindset in children’s
response to training have, however, been lacking. Moreover, the
neurocognitive systems that support changes in growth mindset
in response to training in children are not known. Addressing
these knowledge gaps has the potential to provide important
insights into the inter-relations between growth mindset and
learning during the early stages of cognitive development. Here,
we investigate whether a training focused on enhancing
foundational cognitive skills in children can also change growth
mindset and identify specific brain systems that underlie gains in
growth mindset in response to cognitive training.
In the past two decades, there has been a growing interest in

interventions that enhance growth mindset as a way to promote
students’ learning (for a review, see ref. 5). Interventions involving
a brief lesson on neural plasticity, which informs individuals that
the brain is malleable with learning, have reported some
promising findings6. For example, a two-session online growth
mindset intervention in a large sample (N= 12,490) of high school
students led to significant improvements in grade point average
and increased enrollment in advanced mathematics courses7.

However, findings have not been consistent across studies8,9,
possibly due to individual differences in the effectiveness of
growth mindset interventions10. Notably, a meta-analysis of
43 studies found that the effects of growth mindset interventions
on academic achievement are modest, with an effect size (Cohen’s
d) of 0.08 for the mean difference between intervention and
control groups9. A broader unresolved issue is whether cognitive
training could lead to changes in growth mindset. Academic
interventions in children and adolescents increase positive
attitude, which may be indicative of changes in growth mind-
set11–13. In late middle-aged and older adults, a multi-skill learning
intervention was found to result in increased growth mindset14.
However, there have been no direct investigations of cognitive
training-related changes in growth mindset in children. In
addition, the role of growth mindset in individual differences in
response to cognitive training remains unclear, as both posi-
tive14–16 and negative17,18 as well as non-significant19,20 relations
between growth mindset and training-related performance gains
have been reported.
Crucially, to the best of our knowledge, although neural

plasticity is often implied in growth mindset interventions,
whether enhancements of growth mindset are associated with
brain plasticity in children has not been directly examined. Extant
cross-sectional EEG and fMRI studies have pointed to several brain
systems that may be associated with growth mindset, including
those that support cognitive control, motivation, and learning and
memory. For example, studies using event-related potentials have
revealed enhanced error monitoring signals, most likely
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originating from the anterior cingulate cortex (ACC)21, in
individuals who endorse higher growth mindset22–24. Growth
mindset has also been associated with the striatum, a basal
ganglia region crucial for motivation and reward-related learn-
ing25,26. One resting-state fMRI study found that growth mindset
was correlated with functional connectivity between the striatum
and dorsal ACC and dorsolateral prefrontal cortex27. In addition,
the hippocampal learning and memory system, which has been
linked to positive attitude to math28, may also facilitate growth
mindset. Taken together, while extant studies hint at putative
brain systems underlying growth mindset, the neurobiological
mechanisms underlying changes in growth mindset associated
with cognitive training remain unknown.
Here we investigate changes in growth mindset, and their

neural basis, associated with a unique tutoring-based training
program designed to enhance foundational cognitive skills in
early elementary school children (ages 7–10 years). Critically, our
individualized training program (see Methods and Fig. 1a for
details) uniquely focused on children’s learning of cognitive skills
rather than exclusively instructing the concept of growth mindset.
Although targeted growth mindset interventions have been

shown to be effective, it remains to be determined whether
children’s positive learning experiences can also enhance growth
mindset. We reasoned that our training program encouraged
children to focus on learning to improve their skills, rather than to
demonstrate their ability, and therefore, was well-aligned to the
core concept of growth mindset5. We first examined changes in
children’s growth mindset across 4 weeks of training, compared to
business-as-usual schooling, to determine whether the cognitive
training program enhanced growth mindset. Based on previous
studies suggesting that academic interventions not only improve
academic performance but also change students’ attitudes by
fostering positive learning experiences11,13, we hypothesized that
children in the training, compared to control, group would show
higher growth mindset in response to training. Next, we used
structural equation modeling to test the hypothesis that higher
levels of growth mindset prior to training would lead to better
cognitive performance with training. Finally, we used task-based
fMRI to examine the neural basis of changes in growth mindset in
children in response to cognitive training. Based on cross-sectional
studies on neural correlates of growth mindset or positive
academic attitudes in children23,27,28, we predicted that neural

Fig. 1 Overview of study design and training-related changes in growth mindset in children. a The study included multiple visits, with
neuropsychological assessments (NP) at the beginning of the study and cognitive assessments and fMRI sessions at pre- (Pre) and post- (Post)
visits. Children in the training group participated in a 4-week tutoring-based training program and those in the control group completed all
parts of the study except for training. Sample tutoring materials and fMRI task are shown. Additional description of the tutoring protocol and
fMRI task design can be found in Methods. Adapted from Chang et al.29. b Greater endorsement of growth mindset was observed in the
training, compared to control, group at post-visit after the 4-week period. Group means are shown in thicker lines and individual trajectories
are shown in thinner gray lines. Error bar shows standard error of mean. c Growth mindset prior to training correlates with changes in growth
mindset in the training (red) group, with a significant difference in slope between training and control (blue) groups. d, e Cross-lagged panel
analysis in structural equation modeling (SEM) shows a significantly greater cross-lagged effect of growth mindset on math skills (WJ-III Math
Fluency) in the (d) training (solid red line), compared to (e) control (dotted blue line), group. Values represent standardized path estimates.
*p < .05, **p < .01, ***p < .001, n.s. not significant.
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plasticity in cognitive control, motivational, and memory systems
would support growth mindset gains.

RESULTS
Changes in children’s growth mindset after 4 weeks of
cognitive training
The first goal of our study was to examine whether children who
received 4 weeks of cognitive training showed higher levels of
growth mindset relative to business-as-usual control group after
the same time interval. In a mixed ANCOVA (see Methods), we
found significant main effects of group (training, control) and time
(pre-, post-training) (Fs > 4.975, ps < 0.029, η2s > 0.032) and a
significant group by time interaction, F(1,76)= 4.975, p= 0.029,
η2= 0.032 (Fig. 1b). Follow-up two-tailed t-tests confirmed that
children’s growth mindset increased significantly in both training,
t(51)= 5.052, p < 0.001, Cohen’s d= 0.698, 95% CI [0.392, 1.003],
and control, t(26)= 3.287, p= 0.003, Cohen’s d= 0.331, 95% CI
[0.123, 0.538], groups. While growth mindset was not significantly
different between training and control groups prior to training,
t(77)= 0.695, p= 0.489, Cohen’s d= 0.164, 95% CI [−0.308, 0.638],
this group difference was significant after 4 weeks, t(77)= 2.142,
p= 0.035, Cohen’s d= 0.508, 95% CI [0.029, 0.987], with higher
levels of growth mindset in the training group (M= 4.52,
SD= 0.49), compared to the controls (M= 4.21, SD= 0.79). Given
that the two groups displayed the same level of growth mindset
prior to training, it is less likely that higher levels of growth
mindset at post-test in the training group are associated with
“more room to improve.” Together, these results demonstrate that
children who received cognitive training showed greater increases
in growth mindset than those who did not participate in the
cognitive training program.

Relation between growth mindset prior to training and gains
in growth mindset after training
Next, we examined how training-related changes in growth
mindset were associated with individual differences in growth
mindset prior to training. A careful examination of our data
indicated that most of participants across both groups (72.2%)
showed positive changes in their growth mindset over 4 weeks,
including those with above average levels of growth mindset at
pre-visit (Fig. 1c). Our analysis revealed that individual differences
in the degree of improvements of growth mindset scores were
strongly negatively correlated with growth mindset scores prior to
training in the training group, r(50)=−0.752, p < 0.001, Cohen’s
d= 2.280, 95% CI [1.448, 3.113]: those with lower levels of growth
mindset prior to training showed greater gains in growth mindset.
More importantly, this association was significantly different from
that in the control group, Z= 2.476, p= 0.013 (Fig. 1c; Supple-
mentary Tables 4–5), and this association did not reach
significance in the control group, r(25)=−0.345, p= 0.078,
Cohen’s d= 0.736, 95% CI [−0.083, 1.555]. Our results show that
(i) most children, including those with above average levels of
growth mindset at pre-visit, showed positive gains in their growth
mindset, and (ii) those with lower levels of growth mindset prior to
training had higher gains in growth mindset, with a stronger
association in the training, compared to control, group. These two
observations suggest that our findings cannot be simply
atrributed to “regression to the mean” and reveal systematic
training-induced changes in growth mindset explained by growth
mindset prior to training across individuals.

Influence of growth mindset on math skills in response to
cognitive training
We next implemented a cross-lagged panel analysis using
structural equation modeling (SEM) to test whether growth

mindset prior to training predicts post-training math skills
measured by standardized scores from the Math Fluency subtest
of the WJ-III in the training, compared to control, group. We found
that growth mindset prior to training was associated with post-
training math skills in the training group, β= 0.216, p= 0.025,
which suggests that higher levels of growth mindset lead to better
math performance with training (Fig. 1d). This relationship was not
observed in the control group, β=−0.219, p= 0.191 (Fig. 1e). A
comparison between baseline (unconstrained) and constrained
models in the multi-group analysis revealed that the constrained
model fit worse than the baseline model, χ2(1)= 4.433, p= 0.035,
suggesting that the predictive role of growth mindset at pre-
training on post-training math skills was significantly different
between training and control groups (Supplementary Table 6).
Additionally, a negative relationship between math skills prior to
training and post-training growth mindset was observed in the
training group (β=−0.234, p= 0.042), which suggests that
children with lower math skills prior to training show greater
gains in growth mindset in response to training. These findings
are consistent with greater improvements in WJ-III Math Fluency
scores observed in children with math learning difficulties
compared to typically developing children (see Supplementary
Results for details). Together, our SEM reveals that cognitive
training leads to better math performance in children who scored
higher on growth mindset prior to training, providing evidence
that growth mindset is associated with better math skills in
response to cognitive training.

Relation between training-induced changes in brain
activation and growth mindset gains
Our next goal was to investigate the neural correlates of training-
induced changes in growth mindset associated with parametric
modulation of math problem difficulty. Using an event-related
parametric fMRI task design, our analysis assessed neurocognitive
mechanisms of growth mindset gains associated with perfor-
mance of more challenging math problems (see also Methods). We
first examined changes in regional brain activation in relation to
changes in growth mindset. We found that increases in brain
activation in the dorsal ACC in both hemispheres, right dorsal
striatum, and right hippocampus were correlated with increases in
growth mindset in the training group (Fig. 2a–d; Table 1).
Furthermore, gains in growth mindset remained significantly
correlated with changes in brain responses in the right dorsal ACC
and right hippocampus when controlling for age, IQ, and changes
in math skills (Supplementary Table 7). Among the regions
identified in the training group, no significant relation between
changes in brain activation and changes in growth mindset was
observed in in the control group (ps > 0.447). Interestingly, we did
not observe changes in brain activation in the nucleus accumbens
(ventral striatum) associated with gains in growth mindset in the
training group (Supplementary Fig. 1). Together, these results
uncover distinct neurobiological mechanisms underlying training-
induced gains in growth mindset when solving more difficult
math problems.

Relation between training-induced changes in functional
connectivity and growth mindset gains
We next examined whether changes in functional connectivity
amongst four brain regions identified in regional activation
analysis (bilateral dorsal ACC, right dorsal striatum, and right
hippocampus; Fig. 3a) were related to changes in growth mindset
with training. In a multiple regression model with changes in
connectivity between nodes in a network of identified regions as
predictors, we found that changes in functional connectivity
amongst four brain regions jointly explained a significant amount
variance in changes in growth mindset with training (Fig. 3b), adj.
R2= 0.208, F(6,31)= 2.615, p= 0.036. Such a relationship was not
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observed in the control group, adj. R2= 0.047, F(6,10)= 1.131,
p= 0.411. Additional analyses found that functional connectivity
amongst the same set of brain regions (left and right dACC, right
striatum and hippocampus) did not predict changes in math skills
(measured by WJ-III Math Fluency) in the training group, adj.
R2= 0.105, F(6,31)= 1.726, p= 0.148. Furthermore, changes in
functional connectivity of the nucleus accumbens with dACC,
dorsal striatum, and hippocampus did not predict changes in
growth mindset in the training group, adj. R2= 0.069,
F(4,33)= 1.682, p= 0.178.
We then examined the relation between changes in connectiv-

ity in each of the four regions of interest and changes in growth
mindset scores, and found that increased connectivity of two

individual links of the right dorsal ACC were positively correlated
with changes in growth mindset with training: right dorsal ACC -
left dorsal ACC, r(36)= 0.361, p= 0.026 (0.078, FDR-adjusted), and
right dorsal ACC - right dorsal striatum, r(36)= 0.449, p= 0.005
(0.028, FDR-adjusted) (Fig. 3c, d; Supplementary Table 8). These
associations were not significant in the control group (Supple-
mentary Table 8). Taken together, these results further elucidate
that plasticity of dorsal ACC and striatal response and inter-
connectivity supports children’s growth mindset gains in response
to cognitive training.

DISCUSSION
We examined whether cognitive training designed to promote
academic learning in early elementary school children could in
parallel enhance growth mindset, and investigated brain mechan-
isms underlying individual differences in growth mindset gains
with training. Our analysis revealed three major findings. First, we
found that cognitive training led to improvements in growth
mindset with greater benefits among those who had lower levels
of growth mindset prior to training. Second, children with higher
levels of growth mindset prior to training showed better math
performance in response to training. Third, growth mindset gains
were associated with plasticity of neural response and connectiv-
ity involving dorsal ACC, striatum, and hippocampus regions that
support cognitive control, motivation, and memory. Our findings
demonstrate that growth mindset can be enhanced by cognitive
training and, furthermore, provide new insights into the
neurobiological mechanisms underlying malleability of growth
mindset.
Our study provides direct evidence that a tutoring-based

training program targeting foundational cognitive skills in children
leads to increases in growth mindset—a belief that one’s
intelligence can change with effort that is associated with

Fig. 2 Plasticity of neural response associated with increases in growth mindset with cognitive training. Training-related increases in brain
activation in the dorsal anterior cingulate cortex (dACC) on the (a) left and (b) right side, (c) right striatum (putamen), and (d) right
hippocampus during more difficult math problem solving are significantly correlated with growth mindset gains in the training group. Color
bar represents strength of association between changes in brain activation and growth mindset gains. Beta values of ROIs were extracted
visualize the relationship between changes in growth mindset and changes in brain responses identified from whole brain analysis.

Table 1. Brain regions showing significant changes in neural response
associated with gains in growth mindset.

MNI Coordinates

Region x y z Max Z Cluster size

Positive effect

dACC −2 22 16 4.18 179

Left dACCa −6 24 20 4.57 107

Right dACCa 12 26 22 3.04 44

Right hippocampus 38 −16 −16 3.53 147

Right striatum (putamen) 34 −2 −10 2.74

Negative effect

No significant clusters

dACC dorsal anterior cingulate cortex.
aThe left and right dACC subpeaks were identified using AAL masks.
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increased desire to learn, positive views of effort, and willingness
to take on challenges5. Our training program, which was
individually tailored to students’ learning needs with the goal of
mastering fundamental number knowledge, effectively improved
both numerical skills29 and growth mindset in children. Similar to
our behavioral findings, a previous study with older adults also
found increased growth mindset following cognitive intervention,
which enhanced learning in parallel14. Our findings suggest that a
positive learning experience focused on mastery of learning
materials may facilitate children to endorse growth mindset by
fostering beliefs that their abilities can be improved through effort
and reducing attribution of their success or failure to fixed
traits5,30. These findings are also consistent with a meta-analysis
pointing to a link between mastery-oriented learning goals and
growth mindset31, suggesting that a supportive learning environ-
ment can lead to simultaneous improvements in academic
performance and growth mindset.
We found a stronger negative correlation between gains in

growth mindset and growth mindset prior to training in the
training group, compared to the control group. This finding points
to greater benefits from the training program for children with
lower levels of growth mindset which is commonly associated
with lower academic achievement. Cross-lagged panel analysis
revealed that children with lower math skills prior to training had
higher endorsement of growth mindset after training. Further-
more, cognitive training led to improvements in a wider range of
math skills, extending beyond quantity discrimination ability29 to
arithmetic problem solving skills, particularly in children with math
learning difficulties. Thus, it is possible that our cognitive training
program provided additional opportunities for low-achieving
children to endorse more growth mindset through enhanced
learning in core number knowledge32,33. Convergent with our
findings, previous growth mindset interventions have also
observed greater benefits in students with lower achievement7,34.
Together, these findings suggest that cognitive training can
enhance both academic performance and growth mindset.
Structural equation modeling of longitudinal behavioral data

revealed that growth mindset prior to training predicted higher
math skills with training, even after controlling for math skills prior
to training. Importantly, the stronger positive impact of growth
mindset on math skills observed in the training, compared to
control, group indicates that the influence of growth mindset on
achievement is strengthened by cognitive training. These findings

converge on related literature pointing to a positive correlation
between growth mindset and performance gains in response to
training in other domains such as working memory and cognitive
control14–16. Our findings suggest that a training program that
focused on mastery of contents can positively influence learning
in children. Likewise, interventions focused on enhancing growth
mindset are thought to have positive impact on academic
achievement5,7,35. These findings are broadly consistent with the
notion that motivational aspects of learning are critical for
individuals’ success36. Critically, longitudinal assessments of both
growth mindset and cognitive abilities have been surprisingly rare.
Our unique longitudinal training study combined with structural
equation modeling overcame limitations of cross-sectional studies
and demonstrated the links between growth mindset and
cognitive skill acquisition in a more rigorous manner. Our findings
also provide new insights into whether growth mindset is
associated with individual differences in response to interventions
in an academically relevant domain.
Our final goal was to explore potential brain mechanisms

underlying growth mindset gains in response to cognitive training
in children. Here we found that growth mindset gains were
associated with increased neural response and connectivity of the
dorsal ACC, striatum, and hippocampus. Notably, dorsal ACC
connectivity with striatum emerged as the strongest individual
circuit predicting growth mindset gains, which suggests a central
role for plasticity of cortico-striatal circuity in driving growth
mindset changes. The dorsal ACC is important for cognitive
control processes, involving volitional action and implementation
and correction of action plans37–39, which are instrumental in
regulating attention and enabling learners to stay task-focused in
the presence of obstacles40,41. The engagement of these processes
is consistent with the notion that growth mindset allows
individuals to persist in response to setbacks5. Behavioral studies
have suggested that growth mindset is associated with self-
regulated learning, including persistence, planning, and monitor-
ing3,31. Studies using event-related potentials have also linked
growth mindset with neural response to cognitive control and
error-monitoring processes that facilitate “learning from mis-
takes”22. Our findings suggest that greater engagement of dorsal
ACC together with striatum, implicated in value-based action
selection42,43, may facilitate more effective goal-directed actions
to support learning and growth mindset.

Fig. 3 Plasticity of dorsal ACC–subcortical functional connectivity associated with increases in growth mindset with cognitive training.
a Brain areas and relative strength of training-related changes in task-based connectivity associated with growth mindset gains. b Changes in
connectivity amongst 4 brain regions (6 ROI-to-ROI links shown in (a)) jointly contributes to changes in growth mindset in the training group.
c, d Changes in connectivity of (c) the right dorsal ACC with left dorsal ACC and those of (d) the right dorsal ACC with right striatum are
significantly associated with changes in growth mindset in the training group.
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Theories of mindset have posited distinct motivational and
volitional phases involving goal selection and implementation44.
Importantly, dorsal ACC circuits play a central role in both these
processes and are crucial for regulating cognitive control which is
effortful and intrinsically costly45. Dorsal ACC and cortico-striatal
circuits are also central to allocation of cognitive resources based
on evaluation of the expected value of control, which regulates
how much control to exert by weighing effort costs against
potential rewards or performance gains46. Consistent with this
view, a recent behavioral study found that cognitive control skills
were malleable and could be improved through training47. Taken
together, these findings suggest that children who endorse more
growth mindset in response to training are more likely to engage
in action selection toward learning goals, which in turn facilitates
cognitive skill acquisition.
Although the behavioral component of our study was

adequately powered, one limitation is the smaller neuroimaging
sample size of the control group. Consequently, our analysis of the
relation between training-induced changes in brain activation and
growth mindset gains was limited to the training group. Further
studies with larger neuroimaging samples in the control group are
needed to determine the specificity of our findings. Another
potential limitation is that we were not able to identify factors that
contributed to changes in growth mindset in the control group.
Follow-up studies are needed to clarify whether positive learning
experiences in regular classrooms may also contribute to gains in
growth mindset. Future studies will also benefit from appropriate
active control groups that are closely matched to training group in
terms of participants’ expectation of improvements48. These
enhancements may also lead to more precise characterization of
the neurocognitive mechanisms underlying growth mindset gains
in children with varying levels of cognitive abilities.
In conclusion, our study demonstrates that a cognitive training

program designed to strengthen academically-relevant founda-
tional skills can also enhance growth mindset in 7–10-year-old
children. We suggest that plasticity of cortico-striatal circuits
involved in volitional cognitive control and action selection is a
key neurobiological mechanism underlying cognitive-training-
induced changes in growth mindset. Findings provide support
for the positive role of growth mindset in academic learning and
achievement. We suggest that interventions that combine growth
mindset and cognitive training may be especially beneficial for
students with learning difficulties. More generally, our findings
may inform evidence-based growth mindset interventions based
on notions of brain plasticity5,7,49.

METHODS
Participants
Ninety-six participants were initially recruited in the Great San
Francisco Bay area to participate in our training study. Participants
were right-handed and had no history of psychiatric illness or
neurological disorders. All protocols were approved by the
Stanford University Institutional Review Board and were per-
formed in accordance with the American Psychological Associa-
tion Code of Conduct. Written informed consent was obtained
from the parents of the children.
The current study focused on growth mindset changes and

their neural basis in children and therefore, we only included
individuals who had complete behavioral and brain imaging at
both pre- and post-visits, resulting in a total of 79 children (45
females; age range= 6.76–10.02 years old, M= 8.20, SD= 0.65 at
pre-visit). Among them, 52 children participated in training and 27
children were part of a no-contact control group, which controlled
for business-as-usual schooling experience50. Children in the no-
contact control group completed all components of the study
except the 4-week training (see also study design in Fig. 1a). The

two groups did not differ in age, gender, IQ, growth mindset, or
math problem solving tasks prior to training (Supplementary Table
1).
Because no previous studies have directly examined growth

mindset gains in response to cognitive training in children,
population-based estimate of effect size51 could not be used for
power analysis. Based on previous tutoring-based training studies
with children (range of Cohen’s d: 1.1–1.3)52,53, we estimated that
a sample size of >26 would achieve a power of >99% for analysis
of gains in growth mindset. Observed effect sizes and power from
the current study are reported in Supplementary Results.
For investigations of brain plasticity underlying changes in

growth mindset in response to cognitive training, we used data
from 38 participants in the training group with high-quality fMRI
and behavioral data at both pre- and post-visits. A total of 14 (out
of 52) participants were excluded for the following reasons: (i) 12
participants did not have high-quality fMRI data at pre- and/or
post-visits; (ii) 1 participant was excluded due to low task accuracy
(<40%) in the fMRI task at both visits; and (iii) 1 participant was
excluded due to invalid or incomplete neuropsychological
assessments at post-visit. The sample size in the training group
(n= 38) was determined adequate (estimated power > 83%) for
brain-behavior analysis based on previous fMRI studies of
tutoring-based intervention in children (range of Cohen’s d:
1.0–1.2)54,55 (for more details on observed effect sizes and power,
see also Supplementary Results). After applying the same
exclusion criteria, a total of 17 participants with high-quality fMRI
data were included in the control group. The two groups did not
differ in age, gender, IQ, growth mindset, or arithmetic tasks at
pre-visit (ps > 0.05). Due to the modest sample size in the control
group, our fMRI data analysis in this group was limited to
characterizing the specificity of brain-behavior relations observed
in the training group.

Subgroups of subjects based on math ability. The training group
included children with a wide range of math abilities, based on
their scores on Math Fluency subtest of Woodcock-Johnson III
Tests of Early Cognitive and Academic Development (WJ-III)56

assessed prior to training. A total of 20 children scoring lower than
90 (below 25th percentile) were identified as having math learning
difficulties (MLD) and the rest of the 32 children scoring 90 or
higher were identified as typically developing (TD) children.

Behavioral measures
Neuropsychological assessment. A comprehensive standardized
battery of neuropsychological assessments was administered to
each participant, including a demographic questionnaire, the
Wechsler Abbreviated Scale of Intelligence (WASI)57 to assess IQ,
and the WJ-III56 to determine mathematical abilities. In addition to
Math Fluency, we administered Calculation, Applied Problems,
Letter-Word Identification, and Word Attack subtests from the WJ-
III, which were not analyzed in the current study. Two alternative
versions of the WJ-III Math Fluency subtest were administrated at
pre- and post-visits to minimize test-retest practice effects in
assessment of children’s improvements in math skills.

Growth mindset survey. Children’s growth mindset was assessed
by a brief 12-item survey, adapted from theories of intelligence
scale58 at both pre- and post-visits. The items included questions
about participants’ growth mindset in math, reading, and
intelligence in general (Supplementary Table 2). Participants were
asked to respond on a 6-point Likert scale of “very very disagree,”
“disagree,” “somewhat disagree,” “somewhat agree,” “agree,” and
“very very agree.” Half of the items were negatively phrased and
were reverse coded. The mean score of these 12 items indexed
the level of growth mindset, ranging from 0 to 5 with 5 indicating
the highest level of growth mindset. The internal reliability of this
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scale in our sample at pre-test, Cronbach’s alpha= 0.82, was
comparable to that of original theories of intelligence scale, 0.786.

Training protocol
To improve fundamental understanding of quantity in children,
we used a one-on-one tutoring-based training program (3 days/
week, for ~60 min/day) designed for early elementary school
children (Fig. 1a). From weeks 1 to 4, children in the training group
progressively acquired fundamental number knowledge. Tutoring
activities were carefully chosen to improve cognitive abilities
associated with counting, comparing, and ordering numbers in
non-symbolic (arrays of dots) and symbolic (Arabic numerals)
formats. To promote mastery-oriented learning which is closely
aligned with growth mindset, as opposed to performance-
oriented approaches5,59, children were encouraged to learn and
received positive feedback upon completion of activities, rather
than being evaluated for their performance levels. More details of
the tutoring procedures in the training program and children’s
gains in number knowledge in response to training can be found
in a recent publication29.

fMRI task
During both pre- and post-visits, children completed two runs of
math problem-solving (addition) task (Fig. 1a) in the MRI scanner.
Given previously shown associations between growth mindset or
positive attitude and math achievement6,7,28, we chose to examine
the neurobiological correlates of growth mindset during math
problem solving. During each trial of our math problem-solving task,
an addition problem was presented for 6 s, followed by a proposed
solution which was presented for 1 s. Participants had a time
window of up to 10.8 s (starting from the presentation of the
solution) to indicate whether or not the proposed solution is correct.
A total of 24 single-digit problems with operands from 2 to 9
(excluding ties) were presented in each run with the order of
problems randomized across participants. Half of proposed solutions
were valid, whereas the other half were invalid with solutions
deviating from the correct answer by ±1 or ±2 units. The difficulty of
each addition problem (“problem difficulty”) was estimated by the
correct answer to the problem, ranging from 5 to 17.

Behavioral data analysis
Effects of cognitive training on growth mindset. To address our
first research question about whether children’s growth mindset
scores change in response to cognitive training, we conducted a
mixed ANCOVA with group (training, control) as a between-
subject factor, time (pre-, post-training) as a within-subject factor,
and pre-training (i.e., baseline) growth mindset score as a
covariate of no interest to control for pre-existing differences in
growth mindset. Additional two-tailed paired sample t-tests across
pre- and post-visits in the training (or control) group examined
whether and how 4 weeks of training (or business-as-usual
classroom activities) lead to changes in growth mindset scores.
Two-tailed two-sample t-tests at both pre- and post-visits
determined whether the two groups of children (training vs.
control) demonstrate similar or different levels of growth mindset
at each time point. To further address whether children’s pre-
training levels of growth mindset influence the degree of changes
in growth mindset through cognitive training, we examined how
changes in growth mindset are associated with individual
differences in children’s initial levels of growth mindset, using
Pearson’s correlation. Fisher’s Z test was used to test difference in
correlation coefficients between training and control groups to
examine whether the group moderates the relationship between
growth mindset at pre-visit and changes in growth mindset. All
the analyses, including estimates of effect sizes (Cohen’s d, η2, r),
were conducted in R (version 3.6.1; Team60).

Effects of growth mindset on academic achievement. In order to
assess the effect of growth mindset on academic achievement
through cognitive training, we used structural equation modeling
(SEM) to conduct a cross-lagged panel analysis (Fig. 1d, e). A
longitudinal design provided a unique opportunity to examine the
relation between growth mindset on cognitive abilities over time.
WJ-III Math Fluency scores were used as the measure of math skills
in children, which has been shown to be associated with academic
achievement56. In this model, we assumed auto-correlational
effects for both growth mindset and math skills (e.g., the effect of
growth mindset at pre-visit on growth mindset at post-visit), cross-
sectional relationships between growth mindset and math skills at
each visit (e.g., the association between growth mindset and math
skills at pre-visit), and most importantly, cross-lagged effects
between growth mindset and arithmetic skills across visits (e.g.,
the effect of growth mindset at pre-visit on arithmetic skills at
post-visit). Cross-lagged effects in this model were independent
from auto-correlational and cross-sectional effects, thereby
providing more accurate estimates of unique influence of growth
mindset on academic achievement over time through training. We
first examined this cross-lagged effect of growth mindset at pre-
visit on math skills at post-visit in each group (training, control) to
determine which group shows a significant cross-lagged effect.
Next, we conducted a model-fit comparison in a multi-group
analysis by comparing a baseline (unconstrained) model in which
all parameters were free to estimate with a constrained model in
which the cross-lagged effect from growth mindset at pre-visit on
math skills at post-visit was set to be equal in both training and
control groups. A significant difference between the model fits of
baseline and constrained models would indicate that the
influence of growth mindset at pre-test on math skills on post-
visit is different between the two groups. SEM analyses were
conducted with the Lavaan package (version 0.6-5; Rosseel61) in R
(version 3.6.1; Team60).

fMRI data analysis
MRI acquisition and preprocessing. Functional brain images were
acquired on a 3 T Signa scanner (General Electric, Milwaukee, WI)
using a custom-built head coil at Stanford University Lucas Center
for Imaging. Head movement was minimized during the scan by
cushions placed around the participant’s head. A total of 31 axial
slices (4.0 mm thickness, 0.5 mm skip) parallel to the anterior
commissure-posterior commissure line and covering the whole
brain were imaged using a 2D gradient echo spiral in-out pulse
sequence62 with the following parameters: repetition
time= 2000ms, echo time= 30ms, flip angle= 80°, 1 interleave.
The field of view was 220mm and the matrix size was 64 × 64,
providing an in-plane spatial resolution of 3.4375mm. To reduce
blurring and signal loss from field inhomogeneity, we used an
automated high-order shimming method based on spiral acquisi-
tions before acquiring fMRI scans63.
Functional MRI data were analyzed using SPM1264. The first 5

volumes were not analyzed to allow for T1 equilibration. A linear
shim correction was applied separately for each slice during
reconstruction65. Images were realigned to correct for movement
and slice acquisition timing. Images were then spatially normal-
ized to Montreal Neurological Institute (MNI) space and smoothed
with a 6mm full-width half maximum Gaussian kernel to decrease
spatial noise prior to statistical analysis. Translational movement in
millimeters (x, y, z), and rotational motion in degrees (pitch, roll,
yaw) were calculated based on the SPM12 parameters for motion
correction of the functional images of each run of the addition
task. We excluded any run with movement greater than 10mm in
any of the x, y, z directions, pitch, yaw, roll rotations, or mean scan-
to-scan displacement of movement exceeding 0.5 mm.
Movement-related deviant volumes (movement >0.5 voxels or
spikes in the global signal >5%) were interpolated with two
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adjacent scans by a de-spiking procedure similar to those
implemented in AFNI66. No >15% of total volumes per run were
interpolated in either visit of any participant.

Individual statistics. Since no control condition was included in
the addition task, task-related brain responses were estimated
with a parametric approach in the framework of general linear
model implemented in SPM1264. An event-related parametric fMRI
task design allowed us to examine the effects of task difficulty,
controlling for potential confounds such as visual perception and
motor response. For each run at the individual level, problem
difficulty of all addition problems was coded as a modulating
parameter to examine the positive relationship between brain
response and problem difficulty. Here, higher levels of brain
responses indicated greater engagement during completion of
more difficult math problems. Movement parameters of each run
estimated from the preprocessing stage were included as
covariates of no interest. The onset of each trial was convolved
with a canonical hemodynamic response function and a temporal
derivative to account for voxel-wise latency differences in
hemodynamic response. Voxel-wise estimates associated with
the parameter of problem difficulty in the correct trials during the
problem presentation were generated for each run of each
participant at both pre- and post-visits. For each visit (pre or post)
in each participant, one or two runs of available high-quality
addition task data were included in further analysis. High-quality
addition task data met criteria for movement (see MRI acquisition
and preprocessing) and performance on the addition task (>40%
accuracy per run) to ensure attention to task and sufficient
number of trials for data analysis.

Group-level statistics. At the group level, we examined changes in
brain activation (post-visit – pre-visit) associated with changes in
growth mindset scores across individuals in the training group,
using an F-test with contrast images of parametric estimates
based on problem difficulty from individual statistics. In this F-test,
we modeled time points (pre-visit, post-visit) as a within-subject
factor and the difference score of growth mindset (post-visit – pre-
visit) as a covariate. We examined both positive and negative
contrasts of the interaction effects between time points and the
difference score of growth mindset. The whole-brain analysis
identified clusters of activation using a height threshold of
p < 0.01, with family-wise error (FWE) corrections for multiple
comparisons at the cluster level (p < 0.01; spatial extent of 128
voxels based on Monte Carlo simulations).

ROI selection and analysis. To visualize changes in brain
activation associated with changes in growth mindset and ensure
results from whole brain analysis are not driven by outliers, we
created functionally defined regions of interest (ROIs) with a
diameter of 6 mm centering on the peak coordinates of brain
regions showing significant results from regional activation
analysis, which included dorsal ACC, right striatum (putamen),
and right hippocampus (Table 1). For the cluster of dorsal ACC that
crossed the two hemispheres, we used anatomical masks of the
left and right cingulate gyri from the Automated Anatomical
Labeling (AAL) atlas67 to identify local peaks in the left and right
hemispheres separately. In addition, to examine the potential role
of ventral striatum, which was not identified in our regional
activation analysis, in supporting growth mindset, we used
parcellations of nucleus accumbens (NAc) from Brainnetome68

as a priori ROI. Pearson’s correlation was used to examine the
strength of association between changes in brain activation in
ROIs and changes in growth mindset. Additional ROI-based
analyses were conducted in the control group with the ROIs
defined from the training group to examine whether the observed
associations are present without training. Finally, change in beta
values from pre- to post-training in these ROIs was used to further

clarify whether changes in brain activation are correlated with
changes in growth mindset even when controlling for changes in
age, IQ (WASI Full Scale IQ), and math skills (WJ-III Math Fluency).

Multivariate network analysis. To further examine plasticity of
connectivity amongst key regions associated with changes in
growth mindset during math performance, we first used the
general psychophysiological interaction (gPPI) method69 and
examined task-dependent functional connectivity associated with
the parameter of problem difficulty. Four ROIs were selected from
our regional activation analysis: the left and right dorsal ACC, right
striatum (putamen), and right hippocampus. For each participant at
each visit, a model was computed with the parameter of problem
difficulty, each ROI time course, and their interaction term with only
correct trials included. The beta values of the interaction term were
then extracted for all pairs of 4 ROIs (6 ROI-to-ROI links; Fig. 3a) for
each visit of each participant. In a multivariate network regression
analysis, we first examined whether changes in task-dependent
functional connectivity (post-visit – pre-visit) between all 4 ROIs
could predict changes in growth mindset scores (post-visit – pre-
visit). Next, we examined associations between changes in each
individual ROI-to-ROI link and changes in growth mindset scores.
Pearson’s correlation was used to examine associations between
changes in functional connectivity for each ROI-ROI link and changes
in growth mindset. Analyses were performed for both training and
control groups to address training-specific brain plasticity associated
with growth mindset gains. Finally, to assess the potential role of
NAc in the ventral striatum in growth mindset, we additionally
examined whether its functional connectivity with the 4 ROIs could
jointly predict training-induced changes in growth mindset.

Observed effect sizes and power
Based on observed effect sizes of various analyses in the training
group, we estimated observed power in the training group at the
alpha level of 0.05. For the control group, we used effect sizes
from the training group to estimate whether the available sample
size in the control group would have enough power to detect the
same effect sizes at an alpha level of 0.05. All power analyses were
conducted in R (version 3.6.1; Team60 using the package “pwr”
(version 1.3-0)70 and “pwrSEM” (version 0.1.2)71.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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