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Abstract

Abacus-based mental calculation (AMC) is a widely used educational tool for enhanc-

ing math learning, offering an accessible and cost-effective method for classroom

implementation. Despite its universal appeal, the neurocognitive mechanisms that

drive the efficacy of AMC training remain poorly understood. Notably, although aba-

cus training relies heavily on the rapid recall of number positions and sequences, the

role ofmemory systems indriving long-termAMC learning remains unknown.Here,we

sought to address this gap by investigating the role of the medial temporal lobe (MTL)

memory system in predicting long-term AMC training gains in second-grade children,

whowere longitudinally assessed up to fifth grade. Leveraging multimodal neuroimag-

ing data, we tested the hypothesis that MTL systems, known for their involvement

in associative memory, are instrumental in facilitating AMC-induced improvements in

math skills. We found that gray matter volume in bilateral MTL, along with functional

connectivity between theMTL and frontal and ventral temporal-occipital cortices, sig-

nificantly predicted learning gains. Intriguingly, greater graymatter volumebutweaker

connectivity of the posterior parietal cortex predicted better learning outcomes, offer-

ing amore nuanced viewof brain systems at play inAMCtraining.Our findings not only

underscore the critical role of theMTLmemory system inAMC training but also illumi-

nate the neurobiological factors contributing to individual differences in cognitive skill

acquisition.
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Research Highlights

∙ We investigated the role of medial temporal lobe (MTL) memory system in driving

children’s math learning following abacus-basedmental calculation (AMC) training.

∙ AMCtraining improvedmath skills in elementary school childrenacross their second

and fifth grade.

∙ MTL structural integrity and functional connectivity with prefrontal and ventral

temporal-occipital cortices predicted long-termAMC training-related gains.

1 INTRODUCTION

Since its introduction in the 1200s, the abacus has stood the test of

time as an educational tool for mastering mental arithmetic (Butter-

worth, 2006; Li et al., 2016;Wanget al., 2013). It provides aplatform for

efficient mental calculations; individuals proficient in abacus demon-

strate the ability to solve complex arithmetic problems involving large

numbers and multiple operations with remarkable speed and accuracy

(Hatano&Osawa, 1983) (Figure 1A shows an example of abacus-based

calculation). Although abacus-basedmental calculation (AMC) training

has been shown to effectively enhance arithmetic skills in children (Du

et al., 2014; Ku et al., 2012), little is known about the neurocognitive

mechanisms that drive long-term AMC learning gains. To address this

knowledge gap,we used amultimodal brain imaging approach andmul-

tiyear longitudinal assessments to examine children’s mathematical

problem-solving abilities in relation to AMC training. Understanding

whether the integrity of brain structure and functional circuits pre-

dicts long-term AMC training gains can provide valuable insights into

brain-based biomarkers of individual differences in response to inter-

ventions. Findings also have the potential to enhance the development

of mathematical abilities in childhood, which may serve as a founda-

tion for future academic and professional achievements (Butterworth

et al., 2011; Geary et al., 2017; Iuculano & Menon, 2018; National

Mathematics Advisory Panel, 2008; PISA, 2017).

Proficient use of the abacus involves the rapid recall of number

positions and sequences and integration of multiple mnemonic func-

tions (Frank & Barner, 2012; Hanakawa et al., 2003; Hatano & Osawa,

1983; Stigler, 1984), a cognitive process intricately linked to associa-

tive memory systems in the brain. There is growing evidence for a

critical role of the medial temporal lobe (MTL) learning and memory

system, encompassing the hippocampus andparahippocampal gyrus, in

children’s arithmetic problem solving and learning (Chang et al., 2019,

2022; Cho et al., 2011, 2012; De Smedt et al., 2011; Fias et al., 2013;

Menon, 2016; Peters & De Smedt, 2018; Qin et al., 2014; Rivera et al.,

2005; Rosenberg-Lee et al., 2018; Supekar et al., 2013). Notably, a pre-

vious study found that morphometry and intrinsic connectivity of the

hippocampus prior to training predicted arithmetic performance gains

after 8 weeks of short-term math fact retrieval training in children

(Supekar et al., 2013). In another study, the intrinsic connectivity of the

hippocampus predicted learning in response to 4 weeks of fundamen-

tal number sense training in children, which suggests a wide role for

the MTL system in math learning (Chang et al., 2022). This finding was

further solidified by meta-analysis of 14,371 studies which identified

hippocampal circuits as canonical learning pathways across multiple

study contexts (Chang et al., 2022).

Superior math abilities in experienced abacus users are thought

to arise from structured mnemonic representations of numbers as

exceptional memory for sequence of numbers has been observed in

these individuals (Hatano & Osawa, 1983). Enhanced ability to pro-

cess and access representations of numbers is thought to underpin

proficient use of abacus (Cui et al., 2020; Yao et al., 2015). Further-

more, fluent use of abacus involves integration of multiple cognitive

processes, including number representation, math facts, and abacus

principles (Frank &Barner, 2012; Hanakawa et al., 2003; Stigler, 1984),

which is closely aligned with the pivotal role of the MTL system in

the formation of integrated memory representations (Menon, 2016;

Zeithamova & Bowman, 2020). Despite the strong conceptual link

between mnemonic functions and skilled abacus use, there has been

a lack of systematic investigation into the predictive role of the MTL

learning and memory system in long-term AMC training gains. This

critical gap in literature leaves unanswered questions about whether

established functions of the MTL system may be broadly applicable

to mathematical learning contexts that are not explicitly linked to fact

retrieval.

In the current study, we investigated the neural underpinnings of

long-term gains in math abilities associated with AMC training in ele-

mentary school aged children. Children enrolled in the study were

either assigned to receive AMC training in addition to math classes

(Supplementary video data) or continued with their regular math

classes as a control group. After one year of AMC training, 45 second

grade childrenaged7–9years completed structural and functionalMRI

scans. The control group comprised 26 age-, gender-, and IQ-matched

children completedall aspects of the studyexcept for theAMCtraining.

To evaluate long-term learning gains, we assessed children’s learning

rates using standardized math tests from their second to fifth grade in

elementary school (Figure 1B).
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(a)

(b)

F IGURE 1 Sample abacus calculation procedure and the study design. (A) An example of abacus calculation of 32+ 84. The three columns from
the right to left represent digits of ones, tens and hundreds. Each of the beads located in the upper part of the abacus represents five when pushed
downwhile each of the beads in the lower part of the abacus represents 1 when pushed up. To achieve the calculation of 32+84, (a) two beads in
the tens-digit columnwere pushed down (↓) and (b) one bead in the hundreds-digit columnwas pushed up (↑) (adding eight equals adding 10minus
2). Then, (c) one bead in the upper part of the ones-digit columnwas pushed down (↓) and (d) one bead in the lower part of the ones-digit column
was pushed down (↓) (adding four equals adding 5minus 1). The result of this calculation was 116. (B) The study design. Participants were assigned
to abacus-basedmental calculation training (AMC) or control group at the beginning of their first grade. Children in the AMC group completed up
to 5 years of longitudinal training in school (2 h eachweek) from the beginning of their first grade. Structural and resting-state functionalMRI
scans were collected at the 1st time point (after 1-year training). Math ability was assessed from the 1st time point to the 2nd, 3rd, or 4th time
point (after 3–5 years of training) (seeMaterial andMethods for more details). The control group completed all aspects of the study except for
AMC training.

Our primary objective was to determine whether the MTL learning

andmemory system drives individual differences in learning outcomes

following AMC training. Building on our prior findings of the criti-

cal role of the MTL in math learning (Chang et al., 2022; Supekar

et al., 2013) and its general function in binding and consolidatingmem-

ory representations (Menon, 2016; Zeithamova & Bowman, 2020),

we hypothesized that gray matter volume and functional connec-

tivity of the MTL would predict learning gains in the AMC group,

but not the control group. We further extended our analysis to

examine the potential role of the posterior parietal cortex (PPC), a

brain region implicated in numerical cognition and visuospatial atten-

tion (Butterworth & Walsh, 2011; Hubbard et al., 2005; Menon &

Chang, 2021) as well as performance in experienced abacus users

(Du et al., 2013; Li, Hu et al., 2013). Specifically, we aimed to estab-

lish whether the MTL and PPC systems contribute to learning gains

in a similar or distinct manner in the context of long-term AMC

training.

2 MATERIAL AND METHODS

2.1 Participants

A total of 105 children (abacus-basedmental calculation [AMC] group:

n = 57; control group: n = 48) from The Chinese Abacus Training

Project (CATP; see Supplementary methods for details) participated

in the current study. Participants in the AMC group received AMC

training in addition to regular math classes from the beginning of their

first grade to the end of fifth grade, while participants in the con-

trol group continued receiving regular math classes. Children in the

control group were provided with additional learning of conventional

study materials, such as calculation and reading, for the equivalent

duration as additional learning of abacus in the AMC group. Partici-

pants’ math ability assessments were administered from the 1st time

point (see Figure 1B for the study design), which corresponded to the

beginning of their second grade, to the 2nd, 3rd, and 4th time points

in the following four years. Starting math ability assessments from

the 1st time point ensured that participants have acquired fundamen-

tal knowledge about arithmetic operations and visuospatial reasoning

to complete the assessments (see Math ability assessments for more

details). Participants’ neuroimaging data were acquired at the 1st time

point.

To address questions about longitudinal predictors of math learn-

ing,we includedparticipantswho completed both (1) the neuroimaging

session at the 1st time point (beginning of the 2nd grade in elemen-

tary school) and (2) math ability assessments at the 1st time point and

at least one additional math ability assessment between 2nd and 4th

time points. Among a total of 105 participants enrolled in the study

(AMC: N = 57; control: N = 48), 10 participants (AMC: n = 5; con-

trol: n = 5) were not able to complete neuroimaging session or had

poor structural imaging quality; 23 participants (AMC: n = 7; control:

n = 16) had incomplete math ability assessments; and 1 participant in

 14677687, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/desc.13489 by Stanford U

niversity, W
iley O

nline L
ibrary on [29/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 14 XIE ET AL.

the control group was missing demographic information. As a result,

71 participants (AMC: n = 45; control: n = 26) were included in

behavioral and structural neuroimagingdata analysis. AMCandcontrol

groups were well matched in terms of age (p= 0.89), gender (p= 0.42),

and IQ (p=0.38) at the 1st time point. Demographic characteristics are

shown in Table S1.

Considering potential loss to followup inAMCand control groups in

the current study, we additionally confirmed that data were missing at

randomby examiningwhethermath ability at the 1st time point in each

groupwas equivalent betweenparticipantswho completed the current

study and those who dropped out from the study after the 1st time

point. Among those who had math ability scores at the 1st time point,

there was no significant difference in math ability between partici-

pants who completed the study and those who dropped out from the

study (AMC group: completed: n = 45,M ± SD: 53.65 ± 8.82; dropout:

n = 10, M ± SD: 52.10 ± 9.02; t(53) = −0.50, p = 0.62; control group:

completed: n = 26, M ± SD: 49.42 ± 7.33; dropout: n = 20, M ± SD:

48.02± 9.06; t(44)=−0.58, p= 0.57).

For functional MRI (fMRI) data analysis, five participants from the

AMC group and five participants from the control group were fur-

ther excluded due to high head motion (displacement > 3 mm or

rotation> 3◦). A total of 40 participants in the AMC group and 21 par-

ticipants in the control groupwere included in fMRI data analysis, with

the two groups well-matched in terms of age, gender, and IQ at the 1st

time point (all ps> 0.05).

The final sample size of the training group for structural and func-

tional MRI analysis (N = 40–45) was determined adequate (estimated

power > 85%) for brain-behavior association analysis based on pre-

vious neuroimaging studies of math intervention in children (range of

Cohen’s d: 1.0–1.2) (Iuculano et al., 2015; Supekar et al., 2021). Due

to the modest sample size in the control group, our brain-behavior

association analysis focused on the training group.

All participants had normal or corrected-to-normal vision and none

reported any history of hearing loss, neurological or psychiatric dis-

orders, or requirements for special educational assistance. The study

was approved by Zhejiang University in China. All procedures followed

were in compliance with the guidelines of the Helsinki Declaration. All

the parents (or other guardians) of the participants provided written

informed consents.

2.2 Abacus training protocol

Participants in theAMCgroup completed up to 5 years of training from

the beginning of their first grade to the end of their third, fourth or fifth

grade (duration of training:M ± SD = 4.36 ± 0.48 years) in an elemen-

tary school in Qiqihar, Heilongjiang Province of China. AMC training

involved teaching participants how to add, subtract, multiply, or divide

numbers with the abacus with both hands (see Figure 1A for an exam-

ple of the abacus calculation procedure). The training session occurred

for 2 h each week throughout the school year (approximately 320 h

for the full 5-year training after excluding absence due to vacations,

examinations, and other school events).

Participants in the AMC group first learned the principles of aba-

cus operation and performed calculations with a physical abacus. They

were then asked to solve arithmetic problems by visualizing the oper-

ation of beads in abacus in their mind. During this period, finger

movementswere allowed to assistwith imaginarymovements of beads

(see Supplementary video data). They were then asked to calculate

quickly and accurately via visualization of abacus calculations without

finger movements. Throughout the course of this long-term train-

ing, difficulty levels were adjusted in a stepwise manner to improve

their AMC skills gradually. Even after participants acquired the skill

to perform mental arithmetic without the use of physical abacus, they

continued to receive training on the physical abacus to facilitate learn-

ing of increasingly difficult problems. All participants in theAMCgroup

passed the basic level of the qualification examination of the Chinese

Abacus and Mental Arithmetic Association at the 1st time point (after

one-year training), which included serial addition and subtraction of

six numbers (e.g., 89 + 8 – 6 + 2 – 46 + 7). Participants continuously

improved at later time points. With long-term practice, they were able

to automatically process andmanipulate numerical representations on

the mental abacus, allowing them to achieve rapid and precise mental

arithmetic performance without the physical apparatus. By the end of

5 years of training (4th time point), most participants in theAMCgroup

achieved high levels of the qualification examination, which involves

serial addition and subtraction of 10 numbers (e.g., 9847 – 625 + 56

– 1839+ 716+ 2943+ 807+ 61+ 325 – 40) and large multiplication

(e.g., 496× 357) and division (e.g., 26670 ÷ 381) problems.

2.3 Cognitive assessments

2.3.1 IQ assessment

Participants’ intelligence quotient (IQ) was assessed by the Chinese

version of the Combined Raven’s test (Dong et al., 2007). Raw scores

were standardized based on the age norm of Chinese urban children

for each participant.

2.3.2 Math ability assessment

Participants’ math ability was assessed by the Chinese version of a

standardized math test, The Heidelberger Rechentest (Haffner et al.,

2005; Li & Wu, 2004; Wu & Li, 2005). This test assessed participants’

overall math skills, including arithmetic and visuospatial math abil-

ity components, which are two aspects of math ability closely related

to AMC training. The arithmetic component consisted of six time-

limited subtests (maximum number of problems, time limit): addition

(40 problems, 1 min), subtraction (40 problems, 1 min), multiplica-

tion (40 problems, 1 min), division (40 problems, 1 min), filling in

missing number in equations (40 problems, 2 min), and number com-

parisons (40problems, 1min). The visuospatialmath ability component

consisted of five time-limited subtests, including length estimation

(24 problems, 3 min), cube counting (28 problems, 3 min), number
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sequencing (20 problems, 3 min), object counting (21 problems, 1min),

and connecting numbers (10 problems, 2min). The final scorewas con-

verted into t-scores according to Chinese national norms based on

grade, which ranked the child’s math ability among their peers.

Math ability was assessed at four time points: (1) after a year of

training; (2) after three years of training; (3) after four years of training;

and (4) after five years of training (see Figure 1B for the study design).

Considering that participants did not receive training in multiplication

and division in the first grade, these two subtests were not tested in

the 1st time point but in the following three time points when these

arithmetic operations were practiced. All participants included in data

analysis completed themath ability assessment at the 1st time point. In

the AMC group, math ability was assessed twice in three participants,

three times in 26 participants, and four times in 16 participants. In the

control group, math ability was assessed three times in four partici-

pants, and four times in 22 participants. To account for varying number

of math ability scores acquired at different time points across partici-

pants, time points and correspondingmath ability scores were entered

into ahierarchical linearmixedeffectsmodel (Bates et al., 2015) in each

group. The slope of each individual in this model was used as learn-

ing gains in math ability across time points for each participant. Group

differences were tested by two sample t-tests.

2.4 Structural and functional MRI data
acquisition

Structural and resting-state functional MRI data were acquired from

all participants using a 1.5-T scanner (Achieva, Philips) with 8-channel

head coil. High-resolution structural images were obtained using a 3-

dimensional fast field sequencewith following parameters: TR=25ms,

TE = 4.6 ms, flip angle = 15◦, FOV = 256 mm × 256 mm, acquisition

matrix = 256 × 256, reconstruction voxel size = 1 × 1 × 1 mm3, 150

slices in the sagittal plane.

Resting-state functional images were acquired for 6 min using

a single-shot echo planar imaging (EPI) sequence with the follow-

ing parameters: TR = 2000 ms, TE = 50 ms, flip angle = 90◦,

FOV = 230 mm × 230 mm, matrix = 64 × 64, slice thick-

ness/gap= 5mm/0.8 mm, 22 interleaved ascending slices covering the

whole brain.

2.5 Voxel-based morphometry (VBM)

T1-weighted images were manually aligned to conventional anterior

commissure (AC)—posterior commissure (PC) space with landmarks

including the AC, PC andmidsagittal plane and analyzedwith the Com-

putational Anatomy Toolbox (CAT) implemented (http://www.neuro.

uni-jena.de/cat/) in the Statistical Parametric Mapping (SPM12) soft-

ware (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The analy-

sis procedure included skull stripping, segmentationof images into gray

matter, white matter and cerebrospinal fluid probability images, and

spatial normalization of gray matter images to a customized gray mat-

ter template in standard Montreal Neurological Institute (MNI) space.

Gray matter probability maps were thresholded at 0.1 to minimize

inclusion of incorrect tissue types. The images were modulated with

Jacobian determinants and after segmentation they were smoothed

with an isotropic Gaussian Kernel (8 mm full-width half maximum

[FWHM]). Finally, whole brain regression analysis was performed

within each groupwith graymatter volume as an independent variable,

learning gains as a dependent variable, and total intracranial volume

(TIV) and math ability at the 1st time point as covariates of no inter-

est. Statistical threshold was set as height threshold of p < 0.005 and

extent threshold of p < 0.05 (70 voxels) based on Monte Carlo simula-

tions within a gray matter mask. This statistical threshold was chosen

to balance Type I and Type II errors in the current study, consider-

ing that larger sample sizes are typically needed to detect effects with

a more stringent threshold (Carter et al., 2016). To address potential

concern about lenient height threshold of p = 0.005, additional height

threshold of p= 0.001 (uncorrected) is provided for significant regions

at p < 0.005, k > 70 in Supplementary Tables. Anatomical locations of

brain regions were identified by AAL (Tzourio-Mazoyer et al., 2002),

Harvard–Oxford atlas (Desikan et al., 2006), and Juelich histological

atlas (Eickhoff et al., 2005). Follow-up correlation and regression anal-

yses examined the relationship between graymatter volume of regions

of interest (ROIs; clusters identified from whole brain analysis) and

learning gains, controlling for the TIV and math ability at the 1st time

point.

2.6 fMRI data processing and analysis

The first five functional images were discarded to allow for sig-

nal equilibrium. Images were preprocessed and analyzed using the

CONN toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012). The pre-

processing procedure included following steps: realign and unwrap,

slice timing, segmentation, and normalization, and 6mmFWHMGaus-

sian kernel smoothing. In addition to the six motion parameters and

their first derivatives, WM signals and CSF signals were removed

with CompCor method (Behzadi et al., 2007). This component-based

noise correction method reduces physiological and extraneous noise

and provides interpretative information on correlated and anticorre-

lated functional brain networks. The time series was detrended and a

0.01–0.08Hz band-pass filter was applied.

Functional connectivity analysis was conducted by the CONN tool-

box. Our analysis focused onmedial temporal lobe (MTL) and posterior

parietal cortical (PPC) regions implicated in math learning (Supekar

et al., 2013) andnumerical cognition andvisuospatial attention (Menon

& Chang, 2021), respectively. MTL and PPC ROIs were obtained from

the structural regression analysis in the AMC group and were used as

seedROIs in seed-to-voxel functional connectivity analysis in each sub-

ject. Whole brain regression analysis was performed for each group

to investigate whether functional circuits of the ROIs are predictive

of learning gains, with math ability at the 1st time point as a covari-

ate of no interest. Statistical threshold was set at height threshold

of p < 0.005 and extent threshold of p < 0.05 (70 voxels) based on
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Monte Carlo simulations with gray matter mask of Anatomical Auto-

matic Labelling (AAL) 90 regions (Tzourio-Mazoyer et al., 2002). This

statistical threshold was chosen to balance Types I and II errors in

the current study, considering that larger sample sizes are typically

needed to detect effects with a more stringent threshold (Carter et al.,

2016). To address potential concern about lenient height threshold of

p = 0.005, additional height threshold of p = 0.001 (uncorrected) is

provided for significant regions at p < 0.005, k > 70 in Supplemen-

tary Tables. Significant clusters were determined after gray matter

masking. Anatomical locations of brain regions were identified by AAL,

Harvard–Oxford atlas, and Juelich histological atlas.

Follow-up ROI analysis was performed to visualize results and

ensure the findings were not driven by outliers and to confirm group

differences in relation between functional connectivity and learning

gains for each ROI. ROIs were clusters showing significant results from

whole brain analysis.

2.7 Confirmatory cross-validation analysis

Amachine-learning approach combining balanced cross-validation and

linear regression (Cohen, 2010; Supekar et al., 2013) using the Python

regressioncv toolbox (https://github.com/poldrack/regressioncv) was

applied to examine the robustness of predictive ability of gray mat-

ter volume and functional circuits of MTL ROIs. Brain measure (gray

matter volume or functional connectivity of MTL regions) and learn-

ing gains in math ability were included as independent and dependent

variables in a linear regression algorithm after regressing out covari-

ates of no interest (TIV and/or math ability at the 1st time point). A

cross-validation procedure was performed by dividing the data into

four folds so that the distribution of dependent and independent vari-

ableswas balanced across folds. Using a leave-one-outmethod, a linear

regression model was built using three folds and used the left-out fold

to predict the data. By repeating this procedure four times, r(pred,

actual), the correlation between the values predicted by regression

model and the observed values, was computed to represent how well

the independent variable predicts the dependent variable. Nonpara-

metric permutation testing (1000 samples) was used to assess the

statistical significanceof the regression algorithm. Parallel analysiswas

conducted for PPC ROIs.

3 RESULTS

3.1 The abacus-based mental calculation (AMC)
group showed greater long-term learning gains than
the control group

We first examined whether AMC training resulted in significantly

greater learning gains after a year of training, compared to the con-

trol group, who only attended business-as-usual math classes during

the same period. After a year training (at the 1st time point; see also

Figure 1B), the AMC group performed significantly better on the com-

(a) (b)

F IGURE 2 Behavioral results. (A) Learning gains from the 1st time
point. Each individual’s slope in a hierarchical linear mixed effects
model (seeMaterial andMethods) was used to determine learning
gains in math ability from the 1st time point (see also Figure 1B) for
each participant. The abacusmental calculation training (AMC) group
showed higher learning gains in math ability than the control group.
Individual data points are shown in red (AMC group) and blue (control
group) dots. Groupmeans are shown in red (AMC group) and blue
(control group) circles with black outlines. Error bar represents
standard error of themean. ***, p< 0.001. (B) Individual learning
trajectories in each group. Each individual’s score onmath ability
assessments at each time point is shown in red (AMC group) and blue
(control group) dots. Red and blue lines connecting the dots display
individual learning trajectories in the AMC and control groups,
respectively. Groupmeans for math ability assessments at each time
point are shown in red (AMC group) and blue (control group) circles
with black outlines. Error bar represents standard error of themean.

posite score of standardized math ability tests than gender-, age-, and

IQ-matched control group (AMCgroup:M± SD=53.65±8.82; control

group: M ± SD = 49.42 ± 7.33; t(69) = 2.07, p = 0.042, paired t-test).

This finding indicates significant improvements in general math ability

after one year of AMC training when compared to only participating in

regular math classroom activities.

To examine long-term AMC training gains spanning multiple years,

we thenassessed the rateof learningon standardizedmathability tests

across second and fifth training years in the AMC group, compared

to the control group. As math ability scores were acquired at vari-

ous time points between second and fifth training years, time points

and corresponding math ability scores were entered into a hierar-

chical linear mixed effects model (Bates et al., 2015) in each group.

Participant-specific slopes in this model were then used as a measure

of individual learning rates. Learning rates were significantly higher in

theAMC training group than the control group (Figure 2A;AMCgroup:

M± SD=2.97±0.73; control group:M± SD=1.79±0.44; t(69)=7.54,

p < 0.001, paired t-test). Participants in both groups showed consid-

erable individual differences in learning rates (coefficient of variation:

AMC group: 0.24, control group: 0.24; Figure 2B). These results
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XIE ET AL. 7 of 14

F IGURE 3 Graymatter volume of medial temporal lobe (MTL)
regions predicts learning gains in math ability in the abacusmental
calculation training (AMC) group. Results are based on awhole-brain
voxel-basedmorphometry (VBM) regression analysis with total
intracranial volume (TIV) and controlling for math ability at the 1st
time point as covariates of no interest (height threshold p< 0.005;
extent threshold p< 0.05, 70 voxels). HIP= hippocampus;
PHG= parahippocampal gyrus; L= left; R= right.

demonstrate significantly greater long-termmath learning gains in the

AMC group than the control group.

3.2 Gray matter volume of the medial temporal
lobe (MTL) predicts individual differences in
long-term math learning gains in the AMC group

Next, to address our main question about the brain basis of individual

differences in long-term learning gains in response to AMC train-

ing, we used voxel-based morphometry (VBM) to determine whether

structural integrity of the MTL at the 1st time point could predict

longitudinal learning gains.

Using a whole brain regression analysis, we found that gray matter

volume in multiple brain regions was associated with learning gains

in the AMC group. Here, gray matter volume of the bilateral MTL,

PPC, postcentral gyrus, and orbitofrontal gyrus and the left putamen,

right posterior cingulate cortex, right superior temporal gyrus, and

left ventral temporal-occipital cortices (VTOC) showed a positive

association with learning gains (Table S2). Gray matter volume of

the bilateral inferior frontal gyrus, left middle frontal gyrus, and left

fusiform gyrus showed a negative association with learning gains.

Our ROI analysis focused on the MTL (left hippocampus and

parahippocampal gyrus; peak MNI coordinate: [−26, −21, −23]; right

hippocampus and parahippocampal gyrus [32, −9, −24]), implicated in

math learning (Supekar et al., 2013) (Figure 3).We found that graymat-

ter volume of the left MTL and the rightMTLwas positively correlated

with math learning gains in the AMC group (left MTL: r = 0.49, right

MTL: r= 0.48), but not in the control group (ps> 0.22), with significant

between-group differences in brain-behavior associations (ps < 0.04;

Table S6). To further examine predictive ability of structural mea-

sures,weperformedadditional cross-validation analysis usingmachine

learning algorithms. Gray matter volume of both the left MTL [r(pred,

actual) = 0.42, p < 0.001] and the right MTL [r(pred, actual) = 0.40,

p < 0.001] predicted learning gains in the AMC group, but not in the

control group (ps > 0.22), with significant group differences in predic-

tion power (ps < 0.04). Additional analysis controlling for IQ showed

similar results (Supplementary Results).

Together, these results demonstrate that structural integrity of the

MTL is predictive of long-termmath learning gains in response to AMC

training.

3.3 Gray matter volume of the posterior parietal
cortex (PPC) predicts individual differences in
long-term math learning gains in the AMC group

Next, to contrast to the role of the MTL, among regions in which gray

matter volume was associated with learning gains in the AMC group,

our ROI analysis focused on the PPC (left intraparietal sulcus and

superior parietal lobule [−26 −62 45] right intraparietal sulcus and

supramarginal gyrus [44 −48 47]), implicated in numerical cognition

and visuospatial attention (Menon &Chang, 2021) (Figure S1).

Correlation analysis revealed that gray matter volume in the left

PPC and right PPC was positively correlated with learning gains in the

AMC group (left PPC: r= 0.46; right PPC: r= 0.48), but not in the con-

trol group (ps > 0.40), with significant between-group differences in

brain-behavior associations (ps < 0.04; Table S6). Confirmatory anal-

ysis using machine learning approach showed that gray matter volume

of both the left PPC [r(pred, actual)= 0.38, p< 0.001] and the right PPC

[r(pred, actual) = 0.41, p < 0.001] predicted the learning gains in the

AMC group, but not in the control group (ps > 0.63), with significant

group differences in prediction power (ps< 0.002). Additional analysis

controlling for IQ showed similar results (Supplementary Results).

Together, these results demonstrate that structural integrity of the

PPC is predictive of long-termmath learning gains in response to AMC

training.

3.4 Greater functional connectivity of the MTL
predicts long-term math learning gains in the AMC
group

Our next goal was to determinewhether functional connectivity of the

MTL predicts individual differences in long-term math learning gains

with AMC training, and to identify target brain areas associated with

this prediction. We performed a whole brain regression analysis with

intrinsic connectivity of theMTL as the independent variable, learning

gains as the dependent variable, covarying out math ability at the 1st

time point. Specifically, we focused on left and right hemisphere MTL

regions whose structural integrity predicted learning gains.
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(a)

(c)

(b)

F IGURE 4 Functional connectivity of medial temporal lobe (MTL) regions positively predicts learning gains in math ability in the abacus
mental calculation training (AMC) group. A-B. Functional connectivity of the (A) left and (B) rightMTLwith frontal and temporal cortical regions
was positively associated with learning gains in the AMC group. C. Scatter plots of the relation betweenMTL functional circuits and learning gains.
Results are based on awhole-brain functional connectivity regression analysis controlling for math ability at the 1st time point as covariate of no
interest (height threshold p< 0.005; extent threshold p< 0.05, 70 voxels; graymatter mask applied). No significant brain-behavior association was
observed in the control group for the target regions identified in the AMC group. AG= angular gyrus; ATC= anterior temporal cortex;
FG= fusiform gyrus; FP= frontal pole; IFG= inferior frontal gyrus; LG= lingual gyrus; MTG=middle temporal gyrus; OFG= orbitofrontal gyrus;
PHG= parahippocampal gyrus; STG= superior temporal gyrus; L= left; R= right.

We found that functional connectivity of the left MTL with the

right inferior frontal gyrus and right parahippocampal, fusiform and

lingual gyri (Figure 4A; Table S3) and functional connectivity of the

right MTL with the right orbitofrontal gyrus, bilateral middle tem-

poral gyrus, and bilateral anterior temporal cortex (Figure 4B; Table

S3) were positively correlated with learning gains in the AMC group

(rs > 0.52), but not in the control group (rs < 0.38) (Figure 4C). Signif-

icant between-group differences in brain-behavior associations were

found for connectivity of the left MTL with the right inferior frontal

gyrus and right parahippocampal, fusiform and lingual gyri, and con-

nectivity of the rightMTLwith the left middle temporal gyrus and right

orbitofrontal gyrus (ps < 0.03) (Table S6). Additional analysis of func-

tional connectivity of regions in which gray matter volume was related

to learning also revealed that connectivity of frontal andVTOC regions

was associated with learning (Supplementary Results). These results

suggest functional circuits betweenMTLand frontal andVTOCregions

support long-term learning gains.

Confirmatory analysis using a machine learning approach showed

that functional connectivity of the left MTL with the right parahip-

pocampal, fusiform and lingual gyri [r(pred, actual) = 0.58, p < 0.001]

and the right inferior frontal gyrus [I: r(pred, actual) = 0.59, p < 0.001;

II: r(pred, actual)= 0.51, p< 0.001] predicted learning gains in the AMC

group. Functional connectivity of the right MTL with the bilateral mid-

dle and superior temporal gyri [left: r(pred, actual) = 0.60, p < 0.001;

right: r(pred, actual) = 0.49, p < 0.001], bilateral anterior temporal cor-

tex [left: r(pred, actual) = 0.54, p < 0.001; right: r(pred, actual) = 0.59,

p<0.001], rightmiddle temporal and angular gyri [r(pred, actual)=0.45,

p = 0.002] and right frontal pole and orbitofrontal gyrus [I: r(pred,
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actual) = 0.65, p < 0.001; II: r(pred, actual) = 0.46, p = 0.002] predicted

learning gains in the AMC group. No such relationships were observed

in the control group (ps > 0.10). Significant group difference in pre-

diction power was found for all these brain regions (ps < 0.04) expect

for connectivity between the right MTL and right middle temporal and

angular gyri (p = 0.11). Taken together, these results suggest that MTL

functional circuits contribute to long-term learning gains in response

to AMC training.

3.5 PPC circuits predict reduced long-term math
learning gains in the AMC group

Finally, considering the involvement of the PPC in visuospatial atten-

tion and numerical problem solving (Ansari, 2008; Arsalidou et al.,

2018; Butterworth & Walsh, 2011; Hubbard et al., 2005; Menon

& Chang, 2021; Nieder, 2016; Peters & De Smedt, 2018), we fur-

ther examined whether functional connectivity of the PPC identified

from whole brain VBM analysis was correlated with learning gains

in response to AMC training. Here, we found that functional con-

nectivity of the left PPC with the left superior parietal lobule and

right orbitofrontal gyrus (Figure 5A; Table S4) and functional con-

nectivity of the right PPC with the bilateral fusiform gyrus, bilateral

middle occipital gyrus, left precentral gyrus, bilateral inferior frontal

gyrus, and right calcarine (Figure 5B; Table S4) were negatively corre-

lated with learning gains in the AMC group (rs < −0.52) (Figure 5C).

Follow-up correlation analyses showed that in the control group, no

significant association between functional connectivity of the PPC

and learning gains was observed in the target regions identified

from the AMC group (Figure 5C; |rs| < 0.30, ps > 0.19), except for

left precentral and inferior frontal gyri (rs = −0.52, ps < 0.016).

There were significant between-group differences in brain-behavior

associations for all identified target regions (ps < 0.05), except

for left precentral and inferior frontal gyri and the right calcarine

(ps> 0.12).

Confirmatory analysis using machine learning approach further

examined thepredictive roleofPPCcircuits in learning. Functional con-

nectivityof thePPCwithall identified target regionspredicted learning

gains in the AMC group [rs(pred, actual) > 0.46, ps < 0.002]. In the con-

trol group, the relationship was not significant for all target regions

(ps > 0.19), except for left precentral and inferior frontal gyri [rs(pred,

actual) > 0.38, ps < 0.019]. Significant group differences in prediction

power were found for all these brain regions (ps< 0.05), except for left

precentral and inferior frontal gyri (ps> 0.26).

To further explore whether functional connectivity of PPC regions

predicts long-term learning gains in a similar way as functional con-

nectivity of MTL regions, we performed a multiple regression analysis

with average positive or negative functional connectivity for each brain

region as predictor and learning gains as dependent variable. Here we

found that functional circuits of the right MTL positively predicted

learning (b=3.27, se=0.77, t=4.25), and functional circuits of thePPC

negatively related to learning (left PPC: b=−1.48, se= 0.44, t=−3.38;

right PPC: b=−2.20, se= 0.61, t=−3.62; Table S5).

Together, these results show that, in contrast to findings that

stronger MTL functional circuitry is associated with better learning,

stronger functional circuits of the PPC are associated with weaker

learning following long-term abacus training.

4 DISCUSSION

Leveraging data acquired from elementary-school-aged children in

a five-year longitudinal study, we investigated the role of the medial

temporal lobe (MTL) learning and memory system in predicting long-

term gains from abacus-based mental calculation (AMC) training. We

found that children who underwent AMC training showed greater

long-term math learning gains than their well-matched peers in the

control group who did not receive the training. Critically, individual

differences in training-induced learning gains were predicted by struc-

tural integrity and functional connectivity of the MTL. Specifically,

MTL functional connectivity with distributed frontal and ventral

temporal-occipital cortical (VTOC) regions were predictive of subse-

quent growth in math abilities in the AMC training group. In contrast,

functional connectivity of the posterior parietal cortex (PPC), a brain

region consistently implicated in visuospatial attention and numerical

cognition, was associated with lower longitudinal gains in math abili-

ties. Our findings underscore the pivotal role of the MTL in long-term

math learning via AMC training and provide insights that could inform

pedagogical strategies for optimizing learning outcomes.

4.1 Predictive role of the MTL in children’s
abacus-based math learning

The MTL is well-established as a central hub for learning and mem-

ory processes (Burgess et al., 2002; Collin et al., 2017; Eichenbaum,

2000; Horner & Doeller, 2017). Extending prior research emphasizing

the involvementof theMTL in the learning and retrieval ofmath facts in

both children and adults (Bloechle et al., 2016; Chang et al., 2019; Cho

et al., 2011, 2012; De Smedt et al., 2011; Klein et al., 2019; Qin et al.,

2014; Rosenberg-Lee et al., 2018; Supekar et al., 2013), we found that

larger gray matter volume of the MTL predicted children’s long-term

math learning gains following AMC training. This convergence of evi-

dence underscores the pivotal role of structural integrity of theMTL in

individual differences in math skill acquisition across time periods and

learning contexts.

Additionally, functional connectivity analyses revealed that cou-

pling of the MTL with multiple prefrontal and VTOC regions predicted

AMC training gains. Previous studies have suggested that abacus train-

ing induces plasticity of structural connectivity (Hu et al., 2011) and

resting-state intrinsic functional connectivity (Xie et al., 2018; Xu et al.,

2023; Zhang et al., 2021) as well as alteration in activation patterns

of fronto-parietal and VTOC regions (Wang et al., 2017, 2019). MTL-

prefrontal cortical functional circuits are thought to be crucial for

long-termmemory consolidation (Japee et al., 2015; Leung et al., 2002;

Song et al., 2019) and has been shown to facilitate arithmetic fact

 14677687, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/desc.13489 by Stanford U

niversity, W
iley O

nline L
ibrary on [29/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 14 XIE ET AL.

(a)

(c)

(b)

F IGURE 5 Functional connectivity of posterior parietal cortex (PPC) regions negatively predicts learning gains in math ability in the abacus
mental calculation training (AMC) group. A-B. Functional connectivity of the (A) left and (B) right PPCwithmultiple cortical regions was negatively
associated with learning gains in the AMC group. C. Scatter plots of the relation between PPC functional circuits and learning gains. Results are
based on awhole-brain functional connectivity regression analysis withmath ability at the 1st time point as covariate of no interest (height
threshold p< 0.005; extent threshold p< 0.05, 70 voxels; graymatter mask applied). No significant brain-behavior association was observed in the
control group for the target regions identified in the AMC group, except for left precentral and inferior frontal gyri. FG= fusiform gyrus;
IFG= inferior frontal gyri; MOG=middle occipital gyrus; OFG= orbitofrontal gyrus; preCG= precentral gyrus; SPL= superior parietal lobule;
L= left; R= right.

retrieval in children (Cho et al., 2011; Menon, 2016; Qin et al., 2014).

VTOC regions, including fusiform and lingual gyri, of which connectiv-

ity with the MTL was predictive of learning gains in the AMC group,

havebeen implicated in awide rangeof numerical tasks including quan-

tity discrimination and mental arithmetic (Arsalidou & Taylor, 2011;

Chen et al., 2021; Iuculano et al., 2018; Skagenholt et al., 2022). Fur-

thermore, greater engagement and plasticity of the fusiform gyrus has

been reported in AMC trained individuals, which provides convergent

evidence for its role in representing numbers on mental abacus, which

is associated with proficient abacus use (Hanakawa et al., 2003; Li,

Wang, et al., 2013; Weng et al., 2017; Zhou et al., 2022). Our finding

highlights the role of functional coupling of theMTLwithmedial VTOC

regions in facilitatingmath skill acquisition via AMC training.

In summary, these results suggest that the functional integration

of the MTL memory system with prefrontal and VTOC systems facil-

itates efficient long-term consolidation of math skills through AMC

training. More broadly, our study provides evidence that the MTL’s

role extends beyond arithmetic fact retrieval and short-term learning

to longitudinal development of problem-solving skills associated with

AMC training.

4.2 Influence of PPC on long-term gains in
abacus-based math learning

Given the vital role of the PPC in visuospatial attention and numer-

ical cognition (Butterworth & Walsh, 2011; Hubbard et al., 2005;

Menon & Chang, 2021), we additionally examined the potential role

of the PPC in AMC training gains. Understanding distinct roles of the

medial temporal lobe (MTL) and the posterior parietal cortex (PPC) in

abacus-based math skill acquisition is vital for several reasons. First,

it enables a more comprehensive understanding of the neurocog-

nitive mechanisms underpinning the development of numerical

problem-solving skills. Each of these brain regions has been previously
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implicated in different aspects of mathematical learning, but their

roles in the specific context of AMC training have not been elucidated.

Second, contrasting the roles of theMTL and PPC can provide insights

into how different neural circuits may be preferentially engaged to

drive AMC learning.

Consistent with previous studies (De Smedt et al., 2019; Price et al.,

2016), the structural integrity—specifically, the gray matter volume—

of the PPC was positively correlated with mathematical learning gains

following AMC training in children. Interestingly, these PPC regions

did not emerge as targets in functional circuits involving the MTL

at a whole-brain level, underscoring their distinct roles in long-term

abacus learning. Instead, our analysis of functional connectivity of

the PPC with other parietal, frontal, and VTOC regions revealed a

negative correlation with long-term math learning gains in the AMC

group. This finding is consistent with prior research suggesting that

hyperconnectivity between thePPCandother brain regions negatively

impacts math abilities (Abreu-Mendoza et al., 2021; Jolles et al., 2016;

Price et al., 2018; Rosenberg-Lee et al., 2015). Moreover, similar to

present findings, a recent arithmetic training study also observed

reduced involvement of parietal circuits and increased engagement of

hippocampal circuits associated with learning, which has been linked

to reduced reliance on procedure based processing and increased use

of retrieval based problem-solving strategy (Fias et al., 2021). These

findings are broadly consistent with the notion that practice may lead

to reduced effort and greater automaticity (Ericsson et al., 2018;Wang

et al., 2013). The inverse relationship betweenPPC circuit engagement

and learning outcomes further highlights the important role of strong

MTL circuits in driving long-term learning gains in response to AMC

training.

In summary, the contrasting roles of the MTL and PPC in abacus-

based math skill acquisition provides a more comprehensive under-

standing of the neurocognitive mechanisms and underscores the

pivotal role of theMTL in long-termmath learning, further highlighting

its importance relative to the PPC in the context of AMC training.

4.3 Associative memory as a mechanism for skill
acquisition in abacus-based learning

Our findings collectively indicate that the structural integrity and

intrinsic connectivity of the MTL plays a critical role in the acquisition

of mathematical skills through abacus-based training in elementary

school children. Our finding is consistent with prior research showing

that the hippocampus, a key component of the MTL, is instrumental in

the formation and consolidation of long-term memory (Schapiro et al.,

2019). Importantly, the hippocampus has been identified as a unique

structure for forming associations between multidimensional cogni-

tive spaces and facilitating generalized learning (Tavares et al., 2015;

Theves et al., 2019). This ability to form associations is particularly

relevant in the context of AMC, which necessitates the integration of

visuospatial representations of numbers with multiple cognitive pro-

cesses involved in arithmetic operations, both of which aspects are

essential for math problem-solving. Aligned with our findings, MTL

circuits havebeen shown toplay an important role in formingnewasso-

ciations and concepts (Ren et al., 2020). Connections between theMTL

and frontal and temporal cortical regions likely serve as theneural basis

for the integration of diverse cognitive processes. Such integration

appears to be crucial for facilitating effective skill acquisition through

AMC training.

4.3.1 Limitation and future directions

While our study offers valuable insights into the role of theMTL learn-

ing and memory system in predicting long-term gains from abacus

training, it also has several limitations that warrant attention. First,

we acknowledge that while we longitudinally assessed math ability

encompassing arithmetic calculation and visuospatial processing and

its underlying neural correlates in long-term- AMC-trained children,

these math assessments may have limited implications for the devel-

opment of broader math achievement. Assessments including more

complex math problem solving may help explore potential transfer of

AMC training to broader math ability. Second, although we focused

on the MTL and contrasted its role with the PPC—two regions criti-

cal for associative memory and numerical cognition respectively—we

did not extensively explore the functional roles of other brain regions

or neural circuits involved. Future research should employ task-based

fMRI studies to illuminatehowadditional brain areasmay contribute to

abacus learning. Third, the modest sample size in our study, stemming

from the time and resource-intensive nature of collecting longitudi-

nal data with children, is also a limitation. The lower retention rate

in the control group could have resulted in reduced statistical power

to detect potential predictors of learning in this group compared to

the training group. To partially address this concern, we employed a

cross-validation approach that demonstrated the robustness of our

predictive models based on structural and resting-state functional

brain features.

Future studies may benefit from classroom-based intervention

studies combined with neuroimaging data acquired before and after

training. Such a design would provide a more comprehensive charac-

terization of learning and brain plasticity as well as neural substrates

associated with concurrent ability in children (Rosenberg-Lee et al.,

2018). Finally, inclusionof anactive control group that receives adiffer-

ent form of cognitive training could help clarify whether the observed

changes are uniquely tied to abacus training or to other aspects of

cognitive skill development.

5 CONCLUSION

Our study expands our understanding of the neurocognitive mecha-

nisms underlying long-termmathematical learning in response toAMC

training. We demonstrate that the structural integrity and functional

connectivity of the medial temporal lobe is a robust predictor of long-

term learning gains in children undergoing AMC training. We suggest

that the hippocampal learning-memory system interacts with frontal
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and temporal regions to integrate representations acrossmultiple cog-

nitive domains to drive long-term learning. More generally, our study

provides insights into sources of individual differences in cognitive skill

acquisition and response to interventions, which may serve as a criti-

cal step towards the development of brain-based markers of efficient

learning.
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